Jumat, 17 Desember 2010

                                       DEBUT PEMAIN NATURALISASI PSSI

        Cemerlangnya penampilan Christian Gonzales dan Irfan Bachdim menyiratkan dampak positif bagi kebijakan naturalisasi PSSI yang dulu ditentang banyak pihak. Benarkah demikian?
Mereka yang menyaksikan pertandingan Indonesia melawan Malaysia hari Rabu (1/12) pasti setuju bagaimana digdayanya Christian “El Loco” Gonzales di lini depan. Ia begitu tangguh di udara  dan perannya sebagai post-player yang berfungsi sebagai tembok pemantul dan memegang bola di wilayah permainan lawan membuat dirinya sangat vital dalam pembangunan serangan Indonesia. Begitu pula dengan partnernya di lini depan, Irfan Bachdim yang memiliki teknik ciamik dan akselerasi eksplosif yang memorak-morandakan pertahanan lawan.
Patut diingat bahwa Irfan Bachdim bukanlah pemain naturalisasi dalam artian ia berpindah kewarganegaraan karena ia adalah warga negara Indonesia dan memegang paspor Indonesia pula. Hanya kebetulan saja ia lama bermukim di Belanda sebelum dipanggil pulang untuk membela panji Merah Putih. Sementara Gonzales telah bertahun-tahun tinggal di Indonesia untuk bermain bagi Persik Kediri dan Persib Bandung. Sudah dari 5 tahun lalu Gonzales dan istrinya memohon perpindahan kewarganegaraan tapi baru dikabulkan sekarang.
Jika anda bertanya apakah naturalisasi pemain seperti yang dilakukan Gonzales berdampak besar bagi timnas kita, saya dengan tegas mengatakan ya! Kapan terakhir kali anda melihat striker tim nasional memiliki kemampuan menahan bola lama-lama di jantung permainan lawan dengan kekuatan tubuh bagian atas yang hebat? Peran yang sebelumnya diemban oleh Bambang Pamungkas tersebut sekarang dijabat oleh Gonzales yang begitu dominan. Gonzales dengan efektif juga rajin membuka ruang dengan turun ke belakang. Tidak hanya itu, insting membunuh pemain kelahiran Uruguay yang membuatnya beberapa kali menjadi topskor Liga Indonesia juga berperan besar. Gol kedua Indonesia yang dicetaknya dengan jelas menggambarkan hal itu. Lihatlah bagaimana dengan tenang ia mengarahkan bola pelan ke pojok gawang Malaysia.
Pertanyaannya, apakah talenta pemain Indonesia sebegitu minimnya sehingga kita harus menaturalisasi pemain asing? Untuk kasus Gonzales bisa dibilang begitu karena relatif kita tidak memiliki stok pemain matang dengan tipe permainan demikian. Selama ini kita selalu dijejali dengan berbagai penyerang yang memiliki kecepatan dan akselerasi, tapi tiada yang memiliki ketenangan dan visi, kecuali Bambang Pamungkas. Yang bisa menjadi bahan pembelajaran adalah bagaimana striker-striker muda kita belajar dari Gonzales. Menilik bahwa kita membutuhkan striker seperti Gonzales, bukankah bijak bila klub dan tim nasional mendidik para pemain mudanya untuk mengakomodasi kebutuhan kita akan pemain bertipe demikian? Striker muda Arema, Yongki Ariwibowo memiliki teknik dan skill yang impresif yang dirasa memiliki potensi untuk berkembang ke arah sana.
       Sementara kesuksesan Irfan Bachdim yang dengan seketika menjadi idola para wanita karena wajah tampannya mengapungkan isu naturalisasi terhadap pemain-pemain Indonesia kelahiran Belanda lainnya. Oke, Irfan memang impresif, tapi hal penting yang harus diingat sudah kita bahas di depan tadi bahwa Irfan bukan pemain naturalisasi. Konyol bila kita berkaca pada kesuksesan Irfan dan memutuskan mengindonesiakan beberapa Londo Belanda yang bahkan tidak pernah mendengar Indonesia Raya. Lagi-lagi yang harus dipikirkan PSSI dan Badan Tim Nasional adalah menularkan skill yang dimiliki Irfan kepada pemain lainnya. Proses tersebut akan sulit karena fondasi dan pendidikan sepakbola usia dini antar pemain berbeda, tapi setidaknya Irfan bisa menjadi benchmark.

      Sesungguhnya naturalisasi tidak bagus bagi pengembangan sepakbola nasional dalam jangka panjang. Tidak lucu jika tim nasional kita dijejali para pemain berdarah asing seperti yang terlihat pada timnas Singapura. Jika memang harus melakukan naturalisasi, biarlah dilakukan terhadap pemain yang akan mendongkrak performa tim dengan dasar yang jelas pula, seperti Gonzales yang lebih dari 5 tahun tinggal di Indonesia. Pemain naturalisasi haruslah menjadi katalis dan patokan bagi pengembangan pemain muda kita, bukannya menjadi tumpuan harapan di masa depan.

                   3 BINTANG INDONESIA DI PIALA AFF 2010


Simak kiprah mereka di persebakbolaan tanah air...
    Bambang Pamungkas
     Masih berusia 30 tahun, Bambang Pamungkas dapat disebut sebagai legenda hidup sepakbola Indonesia. Tambahan dua gol dari titik penalti dalam laga terakhir grup A Piala AFF kontra Thailand Selasa (7/12) lalu menambah panjang rekor golnya bagi Indonesia menjadi 36.
Sebagai pemain terproduktif dalam sejarah timnas Indonesia, Bepe mencetak gol kali pertama bagi Tim Merah Putih saat Indonesia berujicoba dengan Lithuania sebelas tahun silam.
Dalam laga yang berakhir imbang 2-2 tersebut, Bepe sukses mencetak gol terakhir .
Hanya saja, rekor gol tersebut belum disertai dengan sumbangsih trofi juara di ajang resmi internasional. Jika Indonesia berhasil menjadi juara Piala AFF bulan ini, sempurna sudah karir suami Tribuana Tungga Dewi ini.


   Irfan Bachdim
    Ditolak Persija dan Persib, Irfan Haarys Bachdim akhirnya berlabuh bersama Persema saat memutuskan karir sepakbola di tanah air.
Pelatih Persema Timo Scheuneman dengan jeli melihat potensi pemuda kelahiran Amsterdam 22 tahun silam ini. Menjadi pemain andalan Laskar Ken Arok, putra Noval Bachdim yang merupakan orang Indonesia keturunan Arab ini pun dipanggil untuk mengikuti seleksi timnas Indonesia dalam persiapan menghadapi Piala AFF.
Pemilik lebih dari 186 ribu follower di akun twitter, Irfan benar-benar bak David Beckham bagi sepakbola Indonesia. Gol pertama bagi Tim Merah Putih dicetak dengan proses yang cantik.
Umpan akurat Octovianus Maniani dari sisi kiri ke arah tiang jauh, dengan mantap diteruskan pacar Jennifer Kurniawan ini ke gawang Khairul Fahmi sembari menjatuhkan diri, awal Desember lalu.


   Christian Gonzalez
    Lima tahun silam Christian Gonzalez sebenarnya telah berkeinginan berganti kewarganegaraan menjadi WNI untuk membela timnas Indonesia. Namun seperti asap, keinginan penyerang asal Uruguay tersebut hilang dimakan waktu.
Kiprahnya di kompetisi domestiklah yang lebih menyita perhatian kalangan pengamat sepakbola. Total, El Loco mencetak 167 gol selama bermain di kompetisi kasta tertinggi Liga Indonesia yang kemudian berganti menjadi Djarum Indonesia Super League. Kebijakan PSSI yang menggunakan jasa pemain naturalisasi akhirnya membawa pria 34 tahun ini mengenakan seragam Merah-Putih Indonesia.
Dalam debutnya saat Indonesia berujicoba melawan Timur Leste yang berkesudahan 6-0 untuk kemenangan Indonesia, 21 November silam, dua gol berhasil ia cetak. Selama ajang Piala AFF kali ini, sebiji gol juga sukses ia sumbangkan saat laga pembuka kontra Malaysia.


Cukup dulu membaca sepak terjang mereka, sekarang keluarkan semua pertanyaan yang ada di kepala lo untuk ditanyakan langsung pada tiga pemain yang bersinar itu melalui tim supersoccer.
Tim supersoccer bakal memilih masing-masing 10 pertanyaan terbaik... Dan buat yang pertanyaannya berhasil terpilih,  siapin space di kamar lo karena foto ketiga pemain handal tersebut lengkap dengan tandatangan mereka bisa dibawa pulang..
Kontes ini di tutup tanggal 15 Desember 2010.

Tunggu apalagi? ask your question now..

Jumat, 03 Desember 2010

PEMANFAATAN SAMPAH SEBAGAI UPAYA MENGURANGI PEMANASAN GLOBAL


Istilah sampah pasti sudah tidak asing lagi ditelinga. Jika mendengar istilah sampah, pasti yang terlintas dalam benak adalah setumpuk limbah yang menimbulkan aroma bau busuk yang sangat menyengat. Sampah diartikan sebagai material sisa yang tidak diinginkan setelah berakhirnya suatu proses. Sampah adalah zat kimia, energi atau makhluk hidup yang tidak mempunyai nilai guna dan cenderung merusak. Sampah merupakan konsep buatan manusia, dalam proses-proses alam tidak ada sampah, yang ada hanya produk-produk yang tak bergerak (wikipedia).
Sampah dapat berada pada setiap fase materi yitu fase padat, cair, atau gas. Ketika dilepaskan dalam dua fase yaitu cair dan gas, terutama gas, sampah dapat dikatakan sebagai emisi. Emisi biasa dikaitkan dengan polusi. Bila sampah masuk ke dalam lingkungan (ke air, ke udara dan ke tanah) maka kualitas lingkungan akan menurun. Peristiwa masuknya sampah ke lingkungan inilah yang dikenal sebagai peristiwa pencemaran lingkungan (Pasymi).
Berdasarkan sumbernya sampah terbagi menjadi sampah alam, sampah manusia, sampah konsumsi, sampah nuklir, sampah industri, dan sampah pertambangan. Sedangkan berdasarkan sifatnya sampah dibagi menjadi dua yaitu 1) sampah organik atau sampah yang dapat diurai (degradable) contohnya daun-daunan, sayuran, sampah dapur dll, 2) sampah anorganik atau sampah yang tidak terurai (undegradable) contohnya plastik, botol, kaleng dll.
Dalam kehidupan manusia, sampah dalam jumlah besar datang dari aktivitas industri, misalnya pertambangan, manufaktur, dan konsumsi. Hampir semua produk industri akan menjadi sampah pada suatu waktu, dengan jumlah sampah yang kira-kira mirip dengan jumlah konsumsi. Laju pengurangan sampah lebih kecil dari pada laju produksinya. Hal ini lah yang menyebabkan sampah semakin menumpuk di setiap penjuru kota.
Besarnya timbunan sampah yang tidak dapat ditangani tersebut akan menyebabkan berbagai permasalahan baik langsung maupun tidak langsung bagi penduduk kota apalagi daerah di sekitar tempat penumumpukan. Dampak langsung dari penanganan sampah yang kurang bijaksana diantaranya adalah berbagai penyakit menular maupun penyakit kulit serta gangguan pernafasan, sedangkan dampak tidak langsungnya diantaranya adalah bahaya banjir yang disebabkan oleh terhambatnya arus air di sungai karena terhalang timbunan sampah yang dibuang ke sungai.
Selain penumpukan di tempat pembuangan sementra (TPS), sampah pun akan semakin meningkat jumlah nya di tempat pembuangan akhir (TPA). Dengan semakin bertumpuknya sampah di TPA-TPA, akan lebih berpeluang menimbulkan bencana seperti yang terjadi di salah satu TPA yang ada di Bandung beberapa tahun lalu. Bencana longsong yang terjadi di TPA tersebut terjadi karena adanya akumulasi panas dalam tumpukan sampah yang pada akhirnya menimbulkan ledakan yang sangat hebat. Karena ledakan inilah maka sampah-sampah tersebut longsor dan menimbun puluhan rumah serta pemiliknya. Tak kurang dari 100 orang meninggal karena peristiwa ini. Dari kejadian tersebut kita harus berfikir keras bagaimana agar bencana serupa tidak trjadi di TPA-TPA yang lainnya.
Selain dampak yang telah disebutkan tadi, secara tidak langsung sampah yang menumpuk akan berpengaruh pada perubahan iklim akibat adanya kenaikan temperatur bumi atau yang lebih dikenal dengan istilah pemanasan global. Seperti yang telah kita ketahui bahwa pemanasan global terjadi akibat adanya peningkatan gas-gas rumah kaca seperti uap air, karbondioksida (CO2), metana (CH4), dan dinitrooksida (N2O). Dari tumpukan sampah ini akan dihasilkan ber ton-ton gas karbondioksida (CO2) dan metana (CH4). Gas metana (CH4) dapat dirubah menjadi sumber energi yang akhirnya bisa bermanfaat bagi manusia. Sedangkan untuk gas karbondioksida (CO2), sampai saat ini belum ada pemanfaatan yang signifikan.
Akan tetapi proses perubahan gas metana (CH4) menjadi energi tetap saja menghadapi kendala diantaranya adalah kurangnya prospek dari segi ekonomi, yang akhirnya membuat perkembangannya masih tetap jalan ditempat dan entah kapan akan maju. Akibatnya gas metana (CH4) yang dihasilkan dari tumpukan sampah hanya dapat dibiarkan saja mengapung keudara tanpa bisa dimanfaatkan.
Gas karbondioksida (CO2) yang dihasilkan di TPA-TPA pun tidak hanya berasal dari penumpukan sampah-sampah saja. Tetapi berasala juga dari pembakaran-pembakaran sampah plastik yang di lakukan oleh pemulung. Para pemulung ini membakar sampah plastik untuk lebih memudahkan dalam memilih sampah-sampah yang tidak bisa dibakar seperti besi. Padahal dengan pembakaran ini akan sangat merugikan terutama bagi kesehatan masyarakat disekitar tempat pembakaran. Besarnya gas karbondioksida (CO2) yang dihasilkan dari pembakaran tentu saja akan semakin meningkatkan temperatur di permukaan bumi ini. selain itu abu dari sisa pembakaran sampah akan menimbulkan gangguan pernafasan pada masyarakat sekitar.
Menurut Sumaiku selain menghasilkan gas karbondioksida (CO2) dalam jumlah besar, pembakaran sampah akan menghasilkan senyawa yang disebut dioksin. Dioksin adalah istilah yang umum dipakai untuk salah satu keluarga bahan kimia beracun yang mempunyai struktur kimia yang mirip serta mekanisma peracunan yang sama. Keluarga bahan kimia beracun ini termasuk (a) Tujuh Polychlorinated Dibenzo Dioxins (PCDD); (b) Duabelas Polychlorinated Dibenzo Furans (PCDF); dan (c) Duabelas Polychlorinated Biphenyls (PCB). Racun udara dioksin akan berbahaya pada gangguan fungsi daya tahan tubuh, kanker, perubahan hormon, dan pertumbuhan yang abnormal. Dengan demikian pengurangan sampah dengan pembakaran lebih baik dihindari
Ada beberapa cara pengurangan sampah yang lebih baik dari pembakaran yaitu seperti yang diterangkan dalam web wahli. Ada empat prinsip yang dapat digunakan dalam menangani maslah sampah ini. Ke empat prinsip tersebut lebih dikenal dengan nama 4R yang meliputi:
  1. Reduce (Mengurangi); sebisa mungkin lakukan minimalisasi barang atau material yang kita pergunakan. Semakin banyak kita menggunakan material, semakin banyak sampah yang dihasilkan.
  2. Reuse (Memakai kembali); sebisa mungkin pilihlah barang-barang yang bisa dipakai kembali. Hindari pemakaian barang-barang yang disposable (sekali pakai, buang). Hal ini dapat memperpanjang waktu pemakaian barang sebelum ia menjadi sampah.
  3. Recycle (Mendaur ulang); sebisa mungkin, barang-barang yg sudah tidak berguna lagi, bisa didaur ulang. Tidak semua barang bisa didaur ulang, namun saat ini sudah banyak industri non-formal dan industri rumah tangga yang memanfaatkan sampah menjadi barang lain.
  4. Replace (Mengganti); teliti barang yang kita pakai sehari-hari. Gantilah barang barang yang hanya bisa dipakai sekalai dengan barang yang lebih tahan lama. Juga telitilah agar kita hanya memakai barang-barang yang lebih ramah lingkungan, misalnya, ganti kantong keresek kita dengan keranjang bila berbelanja, dan jangan pergunakan styrofoam karena kedua bahan ini tidak bisa didegradasi secara alami.
Sedangkan menurut Syahputra pola yang dapat dipakai dalam penanggulangan sampah meliputi Reduce, Reuse, dan Recycle, dan Composting (3RC) yang merupakan dasar dari penanganan sampah secara terpadu. Reduce (mengurangi sampah) atau disebut juga precycling merupakan langkah pertama untuk mencegah penimbunan sampah.
Reuse (menggunakan kembali) berarti menghemat dan mengurangi sampah dengan cara menggunakan kembali barang-barang yang telah dipakai. Apa saja barang yang masih bisa digunakan, seperti kertas-kertas berwarna-warni dari majalah bekas dapat dimanfaatkan untuk bungkus kado yang menarik. Menggunakan kembali barang bekas adalah wujud cinta lingkungan, bukan berarti menghina.
Recycle (mendaur ulang) juga sering disebut mendapatkan kembali sumberdaya (resource recovery), khususnya untuk sumberdaya alami. Mendaur ulang diartikan mengubah sampah menjadi produk baru, khususnya untuk barang-barang yang tidak dapat digunakan dalam waktu yang cukup lama, misalnya kertas, alumunium, gelas dan plastik. Langkah utama dari mendaur ulang ialah memisahkar sampah yang sejenis dalam satu kelompok.
Composting merupakan proses pembusukan secara alami dari materi organik, misalnya daun, limbah pertanian (sisa panen), sisa makanan dan lain-lain. Pembusukan itu menghasilkan materi yang kaya unsur hara, antara lain nitrogen, fosfor dan kalium yang disebut kompos atau humus yang baik untuk pupuk tanaman. Di Jakarta, pembuatan kompos dilakukan dengan menggunakan sampah organik
Tentunya cari ini akan lebih baik digunakan dari pada dengan cara pembakaran. Karena selain mengurangi efek pemanasan global dengan mengurangi volume gas karbondioksida (CO2 ) yang dihasilkan, cara ini tidak mempunyai efek samping baik bagi masyarakat ataupun lingkungan. Seperti kata pepatah pencegahan penyakit akan lebih baik dari pada mengobatinya. Kata bijak ini juga bisa digunakan dalam strategi penanganan sampah yakni mencegah terbentuknya sampah lebih baik dari pada mengolah/memusnakan sampah. Karena bagaimanapun mengolah/ memusnahkan sampah pasti akan menghasilkan jenis sampah baru yang mungkin saja lebih berbahaya dari sampah yang dimusnakan. Jadi mari mulai sekarang kita bebenah diri untuk mengurangi hal-hal yang bisa membentuk sampah.

Sabtu, 27 November 2010

                                  Bumi


Gambar berwarna Bumi, dirilis oleh NASA pada tahun 2010
Foto Bumi yang terkenal, "Kelereng Biru"
Penamaan
Adjektif Terestrial, Terran, Telluric, Tellurian, Kebumian
Epos J2000.0[note 1]
Aphelion 152.097.701 km
1,0167103335 SA
Perihelion 147.098.074 km
0,9832898912 SA
Sumbu semi-mayor 149.597.887,5 km
1,0000001124 SA
Eksentrisitas 0,016710219
Periode orbit 365,256366 hari
1,0000175 tahun
Kecepatan orbit rata-rata 29,783 km/s
107.218 km/jam
Inklinasi 1°34'43,3"[1]
ke Bidang Invariabel
Bujur node menaik 348,73936°
Argumen perihelion 114,20783°
Satelit 1 (Bulan)
Ciri-ciri fisik
Jari-jari rata-rata 6,371.0 km[2]
Jari-jari khatulistiwa 6.378,1 km[3]
Jari-jari kutub 6.356,8 km[4]
Kepepatan 0,0033528[3]
Keliling khatulistiwa 40.075,02 km (khatulistiwa)
40.007,86 km (meridian)
40.041,47 km (rata-rata)
Luas permukaan 510.072.000 km²[5][6][note 2] 148.940.000 km² daratan  (29,2 %)
361.132.000 km² perairan (70,8 %)
Volume 1,0832073×1012 km3
Massa 5,9736×1024 kg[7]
Kepadatan rata-rata 5,5153 g/cm3
Gravitasi permukaan di khatulistiwa 9,780327 m/s²[8]
0,99732 g
Kecepatan lepas 11,186 km/s 
Hari sideris 0,99726968 d[9]
23h 56m 4.100s
Kecepatan rotasi 1674,4 km/jam
Kemiringan sumbu 23,439281°
Albedo 0,367[7]
Suhu permukaan
   Kelvin
   Celsius
min rata-rata maks
184 K 287 K 331 K
−89 °C 14 °C 57, 7 °C
Atmosfer
Tekanan permukaan 101,3 kPa (Permukaan laut)
Komposisi 78,08% Nitrogen (N2)
20,95% Oksigen (O2)
0,93% Argon
0,038% Karbon dioksida
Sekitar 1% uap air (bervariasi sesuai iklim)[7]
Bumi adalah planet ketiga dari delapan planet dalam Tata Surya. Diperkirakan usianya mencapai 4,6 milyar tahun. Jarak antara Bumi dengan matahari adalah 149.6 juta kilometer atau 1 AU (Inggris: astronomical unit). Bumi mempunyai lapisan udara (atmosfer) dan medan magnet yang disebut (magnetosfer) yang melindung permukaan Bumi dari angin matahari, sinar ultraungu, dan radiasi dari luar angkasa. Lapisan udara ini menyelimuti bumi hingga ketinggian sekitar 700 kilometer. Lapisan udara ini dibagi menjadi Troposfer, Stratosfer, Mesosfer, Termosfer, dan Eksosfer.
Lapisan ozon, setinggi 50 kilometer, berada di lapisan stratosfer dan mesosfer dan melindungi bumi dari sinar ultraungu. Perbedaan suhu permukaan bumi adalah antara -70 °C hingga 55 °C bergantung pada iklim setempat. Sehari dibagi menjadi 24 jam dan setahun di bumi sama dengan 365,2425 hari. Bumi mempunyai massa seberat 59.760 milyar ton, dengan luas permukaan 510 juta kilometer persegi. Berat jenis Bumi (sekitar 5.500 kilogram per meter kubik) digunakan sebagai unit perbandingan berat jenis planet yang lain, dengan berat jenis Bumi dipatok sebagai 1.
Bumi mempunyai diameter sepanjang 12.756 kilometer. Gravitasi Bumi diukur sebagai 10 N kg-1 dijadikan unit ukuran gravitasi planet lain, dengan gravitasi Bumi dipatok sebagai 1. Bumi mempunyai 1 satelit alami yaitu Bulan. 70,8% permukaan bumi diliputi air. Udara Bumi terdiri dari 78% nitrogen, 21% oksigen, dan 1% uap air, karbondioksida, dan gas lain.
Bumi diperkirakan tersusun atas inti dalam bumi yang terdiri dari besi nikel beku setebal 1.370 kilometer dengan suhu 4.500 °C, diselimuti pula oleh inti luar yang bersifat cair setebal 2.100 kilometer, lalu diselimuti pula oleh mantel silika setebal 2.800 kilometer membentuk 83% isi bumi, dan akhirnya sekali diselimuti oleh kerak bumi setebal kurang lebih 85 kilometer.
Kerak bumi lebih tipis di dasar laut yaitu sekitar 5 kilometer. Kerak bumi terbagi kepada beberapa bagian dan bergerak melalui pergerakan tektonik lempeng (teori Continental Drift) yang menghasilkan gempa bumi.
Titik tertinggi di permukaan bumi adalah gunung Everest setinggi 8.848 meter, dan titik terdalam adalah palung Mariana di samudra Pasifik dengan kedalaman 10.924 meter. Danau terdalam adalah Danau Baikal dengan kedalaman 1.637 meter, sedangkan danau terbesar adalah Laut Kaspia dengan luas 394.299 km2.

Daftar isi

[sembunyikan]

Komposisi dan struktur

Bumi adalah sebuah planet kebumian, yang artinya terbuat dari batuan, berbeda dibandingkan gas raksasa seperti Jupiter. Planet ini adalah yang terbesar dari empat planet kebumian, dalam kedua arti, massa dan ukuran. Dari keempat planet kebumian, bumi juga memiliki kepadatan tertinggi, gravitasi permukaan terbesar, medan magnet terkuat dan rotasi paling cepat. Bumi juga merupakan satu-satunya planet kebumian yang memiliki lempeng tektonik yang aktif.

Bentuk

Putaran rotasi bumi pada poros utara-selatan yang berakibat terjadinya siang dan malam
Bentuk planet Bumi sangat mirip dengan bulatan gepeng (oblate spheroid), sebuah bulatan yang tertekan ceper pada orientasi kutub-kutub yang menyebabkan buncitan pada bagian katulistiwa. Buncitan ini terjadi karena rotasi bumi, menyebabkan ukuran diameter katulistiwa 43 km lebih besar dibandingkan diameter dari kutub ke kutub. Diameter rata-rata dari bulatan bumi adalah 12.742 km, atau kira-kira 40.000 km/π. Karena satuan meter pada awalnya didefinisikan sebagai 1/10.000.000 jarak antara katulistiwa ke kutub utara melalui kota Paris, Prancis.
Topografi lokal sedikit bervariasi dari bentuk bulatan ideal yang mulus, meski pada skala global, variasi ini sangat kecil. Bumi memiliki toleransi sekitar satu dari 584, atau 0,17% dibanding bulatan sempurna (reference spheroid), yang lebih mulus jika dibandingkan dengan toleransi sebuah bola biliar, 0,22%. Lokal deviasi terbesar pada permukaan bumi adalah gunung Everest (8.848 m di atas permukaan laut) dan Palung Mariana (10.911 m di bawah permukaan laut). Karena buncitan katulistiwa, bagian bumi yang terletak paling jauh dari titik tengah bumi sebenarnya adalah gunung Chimborazo di Ekuador.
Proses alam endogen/tenaga endogen adalah tenaga bumi yang berasal dari dalam bumi. Tenaga alam endogen bersifat membangun permukaan bumi ini. Tenaga alam eksogen berasal dari luar bumi dan bersifat merusak. Jadi kedua tenaga itulah yang membuat berbagai macam relief di muka bumi ini seperti yang kita tahu bahwa permukaan bumi yang kita huni ini terdiri atas berbagai bentukan seperti gunung, lembah, bukit, danau, sungai, dsb. Adanya bentukan-bentukan tersebut, menyebabkan permukaan bumi menjadi tidak rata. Bentukan-bentukan tersebut dikenal sebagai relief bumi.

Komposisi kimia

Tabel Kerak oksida F. W. Clarke
Senyawa Formula Komposisi
Silika SiO2 59,71%
Alumina Al2O3 15,41%
kapur CaO 4,90%
Magnesia MgO 4,36%
Natrium oksida Na2O 3,55%
Besi(II) oksida FeO 3,52%
Kalium oksida K2O 2,80%
Besi(III) oksida Fe2O3 2,63%
Air H2O 1,52%
Titanium dioksida TiO2 0,60%
Fosfor pentaoksida P2O5 0,22%
Total 99,22%
Massa bumi kira-kira adalah 5,98×1024 kg. Kandungan utamanya adalah besi(32,1%), oksigen (30,1%), silikon (15,1%), magnesium (13,9%), sulfur (2,9%), nikel (1,8%), kalsium (1,5%), and aluminium (1,4%); dan 1,2% selebihnya terdiri dari berbagai unsur-unsur langka. Karena proses pemisahan massa, bagian inti bumi dipercaya memiliki kandungan utama besi (88,8%), dan sedikit nikel (5,8%), sulfur (4,5%), dan selebihnya kurang dari 1% unsur langka.[10]
Ahli geokimia F. W. Clarke memperhitungkan bahwa sekitar 47% kerak bumi terdiri dari oksigen. Batuan-batuan paling umum yang terdapat di kerak bumi hampir semuanya adalah oksida (oxides); klorin, sulfur, dan florin adalah kekecualian dan jumlahnya di dalam batuan biasanya kurang dari 1%. Oksida-oksida utama adalah silika, alumina, oksida besi, kapur, magnesia, potas dan soda. Fungsi utama silika adalah sebagai asam, yang membentuk silikat. Ini adalah sifat dasar dari berbagai mineral batuan beku yang paling umum. Berdasarkan perhitungan dari 1,672 analisa berbagai jenis batuan, Clarke menyimpulkan bahwa 99,22% batuan terdiri dari 11 oksida (lihat tabel kanan). Konstituen lainnya hanya terjadi dalam jumlah yang kecil. [note 3]

Lapisan bumi

Menurut komposisi (jenis dari materialnya), Bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
Sedangkan menurut sifat mekanik (sifat dari material) -nya, bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
Inti bumi bagian luar merupakan salah satu bagian dalam bumi yang melapisi inti bumi bagian dalam. Inti bumi bagian luar mempunyai tebal 2250 km dan kedalaman antara 2900-4980 km. Inti bumi bagian luar terdiri atas besi dan nikel cair dengan suhu 3900 °C
Inti bumi bagian dalam merupakan bagian bumi yang paling dalam atau dapat juga disebut inti bumi. inti bumi mempunyai tebal 1200km dan berdiameter 2600km. inti bumi terdiri dari besi dan nikel berbentuk padat dengan temperatur dapat mencapai 4800 °C

Catatan

  1. ^ All astronomical quantities vary, both secularly and periodically. The quantities given are the values at the instant J2000.0 of the secular variation, ignoring all periodic variations.
  2. ^ Due to natural fluctuations, ambiguities surrounding ice shelves, and mapping conventions for vertical datums, exact values for land and ocean coverage are not meaningful. Based on data from the Vector Map and Global Landcover datasets, extreme values for coverage of lakes and streams are 0.6% and 1.0% of the earth’s surface. Note that the ice shields of Antarctica and Greenland are counted as land, even though much of the rock which supports them lies below sea level.
  3. ^ Artikel ini memuat teks dari Encyclopædia Britannica Eleventh Edition,artikel "Petrology", publikasi yang sekarang berada di domain umum.

Referensi

  1. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. hlm. 294. ISBN 0387987460. http://books.google.com/books?id=w8PK2XFLLH8C&pg=PA294. 
  2. ^ Various (2000). David R. Lide. ed. Handbook of Chemistry and Physics (edisi ke-81st). CRC. ISBN 0849304814. 
  3. ^ a b IERS Working Groups (2003). "General Definitions and Numerical Standards". McCarthy, Dennis D.; Petit, Gérard IERS Technical Note No. 32, U.S. Naval Observatory and Bureau International des Poids et Mesures. Diakses pada 2008-08-03. 
  4. ^ Cazenave, Anny (1995). Ahrens, Thomas J.. ed (PDF). Global earth physics a handbook of physical constants. Washington, DC: American Geophysical Union. ISBN 0-87590-851-9. http://www.agu.org/reference/gephys/5_cazenave.pdf. Diakses pada 2008-08-03. 
  5. ^ Pidwirny, Michael (2006-02-02). "Surface area of our planet covered by oceans and continents.(Table 8o-1)" Diakses pada 26 November 2007.
  6. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama cia
  7. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama earth_fact_sheet
  8. ^ Yoder, C. F. (1995) p. 12.
  9. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. hlm. 296. ISBN 0387987460. http://books.google.com/books?id=w8PK2XFLLH8C&pg=PA296. 
  10. ^ Morgan, J. W.; Anders, E. (1980). "Chemical composition of Earth, Venus, and Mercury". Proceedings of the National Academy of Science 71 (12): 6973–6977. DOI:10.1073/pnas.77.12.6973 Diakses pada 4 Februari 2007.

Pranala luar

BUMI

                                         Bumi


Gambar berwarna Bumi, dirilis oleh NASA pada tahun 2010
Foto Bumi yang terkenal, "Kelereng Biru"
Penamaan
Adjektif Terestrial, Terran, Telluric, Tellurian, Kebumian
Epos J2000.0[note 1]
Aphelion 152.097.701 km
1,0167103335 SA
Perihelion 147.098.074 km
0,9832898912 SA
Sumbu semi-mayor 149.597.887,5 km
1,0000001124 SA
Eksentrisitas 0,016710219
Periode orbit 365,256366 hari
1,0000175 tahun
Kecepatan orbit rata-rata 29,783 km/s
107.218 km/jam
Inklinasi 1°34'43,3"[1]
ke Bidang Invariabel
Bujur node menaik 348,73936°
Argumen perihelion 114,20783°
Satelit 1 (Bulan)
Ciri-ciri fisik
Jari-jari rata-rata 6,371.0 km[2]
Jari-jari khatulistiwa 6.378,1 km[3]
Jari-jari kutub 6.356,8 km[4]
Kepepatan 0,0033528[3]
Keliling khatulistiwa 40.075,02 km (khatulistiwa)
40.007,86 km (meridian)
40.041,47 km (rata-rata)
Luas permukaan 510.072.000 km²[5][6][note 2] 148.940.000 km² daratan  (29,2 %)
361.132.000 km² perairan (70,8 %)
Volume 1,0832073×1012 km3
Massa 5,9736×1024 kg[7]
Kepadatan rata-rata 5,5153 g/cm3
Gravitasi permukaan di khatulistiwa 9,780327 m/s²[8]
0,99732 g
Kecepatan lepas 11,186 km/s 
Hari sideris 0,99726968 d[9]
23h 56m 4.100s
Kecepatan rotasi 1674,4 km/jam
Kemiringan sumbu 23,439281°
Albedo 0,367[7]
Suhu permukaan
   Kelvin
   Celsius
min rata-rata maks
184 K 287 K 331 K
−89 °C 14 °C 57, 7 °C
Atmosfer
Tekanan permukaan 101,3 kPa (Permukaan laut)
Komposisi 78,08% Nitrogen (N2)
20,95% Oksigen (O2)
0,93% Argon
0,038% Karbon dioksida
Sekitar 1% uap air (bervariasi sesuai iklim)[7]
Bumi adalah planet ketiga dari delapan planet dalam Tata Surya. Diperkirakan usianya mencapai 4,6 milyar tahun. Jarak antara Bumi dengan matahari adalah 149.6 juta kilometer atau 1 AU (Inggris: astronomical unit). Bumi mempunyai lapisan udara (atmosfer) dan medan magnet yang disebut (magnetosfer) yang melindung permukaan Bumi dari angin matahari, sinar ultraungu, dan radiasi dari luar angkasa. Lapisan udara ini menyelimuti bumi hingga ketinggian sekitar 700 kilometer. Lapisan udara ini dibagi menjadi Troposfer, Stratosfer, Mesosfer, Termosfer, dan Eksosfer.
Lapisan ozon, setinggi 50 kilometer, berada di lapisan stratosfer dan mesosfer dan melindungi bumi dari sinar ultraungu. Perbedaan suhu permukaan bumi adalah antara -70 °C hingga 55 °C bergantung pada iklim setempat. Sehari dibagi menjadi 24 jam dan setahun di bumi sama dengan 365,2425 hari. Bumi mempunyai massa seberat 59.760 milyar ton, dengan luas permukaan 510 juta kilometer persegi. Berat jenis Bumi (sekitar 5.500 kilogram per meter kubik) digunakan sebagai unit perbandingan berat jenis planet yang lain, dengan berat jenis Bumi dipatok sebagai 1.
Bumi mempunyai diameter sepanjang 12.756 kilometer. Gravitasi Bumi diukur sebagai 10 N kg-1 dijadikan unit ukuran gravitasi planet lain, dengan gravitasi Bumi dipatok sebagai 1. Bumi mempunyai 1 satelit alami yaitu Bulan. 70,8% permukaan bumi diliputi air. Udara Bumi terdiri dari 78% nitrogen, 21% oksigen, dan 1% uap air, karbondioksida, dan gas lain.
Bumi diperkirakan tersusun atas inti dalam bumi yang terdiri dari besi nikel beku setebal 1.370 kilometer dengan suhu 4.500 °C, diselimuti pula oleh inti luar yang bersifat cair setebal 2.100 kilometer, lalu diselimuti pula oleh mantel silika setebal 2.800 kilometer membentuk 83% isi bumi, dan akhirnya sekali diselimuti oleh kerak bumi setebal kurang lebih 85 kilometer.
Kerak bumi lebih tipis di dasar laut yaitu sekitar 5 kilometer. Kerak bumi terbagi kepada beberapa bagian dan bergerak melalui pergerakan tektonik lempeng (teori Continental Drift) yang menghasilkan gempa bumi.
Titik tertinggi di permukaan bumi adalah gunung Everest setinggi 8.848 meter, dan titik terdalam adalah palung Mariana di samudra Pasifik dengan kedalaman 10.924 meter. Danau terdalam adalah Danau Baikal dengan kedalaman 1.637 meter, sedangkan danau terbesar adalah Laut Kaspia dengan luas 394.299 km2.

Daftar isi

[sembunyikan]

Komposisi dan struktur

Bumi adalah sebuah planet kebumian, yang artinya terbuat dari batuan, berbeda dibandingkan gas raksasa seperti Jupiter. Planet ini adalah yang terbesar dari empat planet kebumian, dalam kedua arti, massa dan ukuran. Dari keempat planet kebumian, bumi juga memiliki kepadatan tertinggi, gravitasi permukaan terbesar, medan magnet terkuat dan rotasi paling cepat. Bumi juga merupakan satu-satunya planet kebumian yang memiliki lempeng tektonik yang aktif.

Bentuk

Putaran rotasi bumi pada poros utara-selatan yang berakibat terjadinya siang dan malam
Bentuk planet Bumi sangat mirip dengan bulatan gepeng (oblate spheroid), sebuah bulatan yang tertekan ceper pada orientasi kutub-kutub yang menyebabkan buncitan pada bagian katulistiwa. Buncitan ini terjadi karena rotasi bumi, menyebabkan ukuran diameter katulistiwa 43 km lebih besar dibandingkan diameter dari kutub ke kutub. Diameter rata-rata dari bulatan bumi adalah 12.742 km, atau kira-kira 40.000 km/π. Karena satuan meter pada awalnya didefinisikan sebagai 1/10.000.000 jarak antara katulistiwa ke kutub utara melalui kota Paris, Prancis.
Topografi lokal sedikit bervariasi dari bentuk bulatan ideal yang mulus, meski pada skala global, variasi ini sangat kecil. Bumi memiliki toleransi sekitar satu dari 584, atau 0,17% dibanding bulatan sempurna (reference spheroid), yang lebih mulus jika dibandingkan dengan toleransi sebuah bola biliar, 0,22%. Lokal deviasi terbesar pada permukaan bumi adalah gunung Everest (8.848 m di atas permukaan laut) dan Palung Mariana (10.911 m di bawah permukaan laut). Karena buncitan katulistiwa, bagian bumi yang terletak paling jauh dari titik tengah bumi sebenarnya adalah gunung Chimborazo di Ekuador.
Proses alam endogen/tenaga endogen adalah tenaga bumi yang berasal dari dalam bumi. Tenaga alam endogen bersifat membangun permukaan bumi ini. Tenaga alam eksogen berasal dari luar bumi dan bersifat merusak. Jadi kedua tenaga itulah yang membuat berbagai macam relief di muka bumi ini seperti yang kita tahu bahwa permukaan bumi yang kita huni ini terdiri atas berbagai bentukan seperti gunung, lembah, bukit, danau, sungai, dsb. Adanya bentukan-bentukan tersebut, menyebabkan permukaan bumi menjadi tidak rata. Bentukan-bentukan tersebut dikenal sebagai relief bumi.

Komposisi kimia

Tabel Kerak oksida F. W. Clarke
Senyawa Formula Komposisi
Silika SiO2 59,71%
Alumina Al2O3 15,41%
kapur CaO 4,90%
Magnesia MgO 4,36%
Natrium oksida Na2O 3,55%
Besi(II) oksida FeO 3,52%
Kalium oksida K2O 2,80%
Besi(III) oksida Fe2O3 2,63%
Air H2O 1,52%
Titanium dioksida TiO2 0,60%
Fosfor pentaoksida P2O5 0,22%
Total 99,22%
Massa bumi kira-kira adalah 5,98×1024 kg. Kandungan utamanya adalah besi(32,1%), oksigen (30,1%), silikon (15,1%), magnesium (13,9%), sulfur (2,9%), nikel (1,8%), kalsium (1,5%), and aluminium (1,4%); dan 1,2% selebihnya terdiri dari berbagai unsur-unsur langka. Karena proses pemisahan massa, bagian inti bumi dipercaya memiliki kandungan utama besi (88,8%), dan sedikit nikel (5,8%), sulfur (4,5%), dan selebihnya kurang dari 1% unsur langka.[10]
Ahli geokimia F. W. Clarke memperhitungkan bahwa sekitar 47% kerak bumi terdiri dari oksigen. Batuan-batuan paling umum yang terdapat di kerak bumi hampir semuanya adalah oksida (oxides); klorin, sulfur, dan florin adalah kekecualian dan jumlahnya di dalam batuan biasanya kurang dari 1%. Oksida-oksida utama adalah silika, alumina, oksida besi, kapur, magnesia, potas dan soda. Fungsi utama silika adalah sebagai asam, yang membentuk silikat. Ini adalah sifat dasar dari berbagai mineral batuan beku yang paling umum. Berdasarkan perhitungan dari 1,672 analisa berbagai jenis batuan, Clarke menyimpulkan bahwa 99,22% batuan terdiri dari 11 oksida (lihat tabel kanan). Konstituen lainnya hanya terjadi dalam jumlah yang kecil. [note 3]

Lapisan bumi

Menurut komposisi (jenis dari materialnya), Bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
Sedangkan menurut sifat mekanik (sifat dari material) -nya, bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
Inti bumi bagian luar merupakan salah satu bagian dalam bumi yang melapisi inti bumi bagian dalam. Inti bumi bagian luar mempunyai tebal 2250 km dan kedalaman antara 2900-4980 km. Inti bumi bagian luar terdiri atas besi dan nikel cair dengan suhu 3900 °C
Inti bumi bagian dalam merupakan bagian bumi yang paling dalam atau dapat juga disebut inti bumi. inti bumi mempunyai tebal 1200km dan berdiameter 2600km. inti bumi terdiri dari besi dan nikel berbentuk padat dengan temperatur dapat mencapai 4800 °C

Catatan

  1. ^ All astronomical quantities vary, both secularly and periodically. The quantities given are the values at the instant J2000.0 of the secular variation, ignoring all periodic variations.
  2. ^ Due to natural fluctuations, ambiguities surrounding ice shelves, and mapping conventions for vertical datums, exact values for land and ocean coverage are not meaningful. Based on data from the Vector Map and Global Landcover datasets, extreme values for coverage of lakes and streams are 0.6% and 1.0% of the earth’s surface. Note that the ice shields of Antarctica and Greenland are counted as land, even though much of the rock which supports them lies below sea level.
  3. ^ Artikel ini memuat teks dari Encyclopædia Britannica Eleventh Edition,artikel "Petrology", publikasi yang sekarang berada di domain umum.

Referensi

  1. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. hlm. 294. ISBN 0387987460. http://books.google.com/books?id=w8PK2XFLLH8C&pg=PA294. 
  2. ^ Various (2000). David R. Lide. ed. Handbook of Chemistry and Physics (edisi ke-81st). CRC. ISBN 0849304814. 
  3. ^ a b IERS Working Groups (2003). "General Definitions and Numerical Standards". McCarthy, Dennis D.; Petit, Gérard IERS Technical Note No. 32, U.S. Naval Observatory and Bureau International des Poids et Mesures. Diakses pada 2008-08-03. 
  4. ^ Cazenave, Anny (1995). Ahrens, Thomas J.. ed (PDF). Global earth physics a handbook of physical constants. Washington, DC: American Geophysical Union. ISBN 0-87590-851-9. http://www.agu.org/reference/gephys/5_cazenave.pdf. Diakses pada 2008-08-03. 
  5. ^ Pidwirny, Michael (2006-02-02). "Surface area of our planet covered by oceans and continents.(Table 8o-1)" Diakses pada 26 November 2007.
  6. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama cia
  7. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama earth_fact_sheet
  8. ^ Yoder, C. F. (1995) p. 12.
  9. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. hlm. 296. ISBN 0387987460. http://books.google.com/books?id=w8PK2XFLLH8C&pg=PA296. 
  10. ^ Morgan, J. W.; Anders, E. (1980). "Chemical composition of Earth, Venus, and Mercury". Proceedings of the National Academy of Science 71 (12): 6973–6977. DOI:10.1073/pnas.77.12.6973 Diakses pada 4 Februari 2007.

Pranala luar